Automatic detection of sealed cracks using images and 3D data

Vision Technology for Inspection of Transportation Infrastructures

PAVEMETRICS Systems Inc.

150 Boulevard René-Lévesque Est, Suite 1820 Québec, Québec, CANADA G1R 5B1

www.pavemetrics.com

Pavemetrics; Infrastructure Vision Systems Specialists

Pavemetrics Headquarters (Banque Nationale Bldg., QC)

- Founded 2009; a "Spin-off" of Canada's National Optics Institute (INO)
- Develop high-speed, mm-level scanning and pattern analysis systems
- 20,000,000+ Miles of Data Collected Since 1997
- 300 Systems in 35+ countries

APPLICATION: Rails

Application: Airports - FOD

Runways currently scanned with Pavemetrics Technology

Pavemetrics

6

Application: ROADS distress and DTM

The Sensor Technology Most Relied-on by DOTs worldwide

Collect Your Own, or Contract-out

LCMS – Certified Technology

NOT a prototype

<u>Certified</u> AND proven around the world.

Any Paved Surface

Pavemetrics

Hotmix

Chipseal

Concrete

LCMS - Specifictions

Sufficient Lateral Resolution

	-
(9)	
-	
. • •	
L [===	

LCMS Specifications	
Acquisition Rate	5,600-11,200 profiles/s
Range Accuracy/resolution	0.5mm / 0.25mm
Lateral Resolution	1mm (FOV = 4m)

Pavemetrics LCMS Data Processing Tree

Understanding 3D Imaging

Range

Intensity

Hypothesis: Sealed cracks are perfectly visible in intensity images, not in 3D

Intensity

Range 3D

BUT...

Some sealing materials can make the sealed cracks to appear perfectly grey...

Range 3D

...or partially white...

Intensity

...or partially shiny...

Intensity

Range 3D

...and a lot of stuff may be confused with a sealed crack (oil patches, tire breaks, etc...)

Macrotexture : Mean Profile Depth (ASTM E1845-01)

Specifications:

- •32kHz or 64kHz laser
- 1mm point spacing (minimum)
- •0.05 mm vertical resolution
- •Low pass filtering 2.5mm features removed. 5mm+ features kept intact.

Macrotexture : Mean Profile Depth (ASTM E1845-01)

Macrotexture sample s104 profil no 1

Macrotexture – LCMS Digital Sand Patch Method

Pros:

- •Network survey is possible at 100kmh
- •Full lane width is measured •5 AASHTO bands
- Great repeatability
 Automatic lane marking detection

Macrotexture

RPI - Road Porosity Index = (Volume under the surface – Ravelling - Cracks) divided by a surface area

 $RPI = (VOI_{air void} - VOI_{pothole} - VOI_{cracks})$

Area_{Total}

Macrotexture – Correlation between MPD and RPI

MPD vs RPI

LCMS vs 64 KHz laser

LCMS vs 64 KHz laser

29

Bleeding

Macrotexture: bleeding

Intensity image

Pavemetrics

Texture image (MTD, mm)

Range Image

Texture Image

Intensity Image

Intensity Thresholding Image

Texture + Intensity Thresholding Images

Morphological Operations

Validation

Reporting and display: sealed crack perimeter and skeleton

Red blobs = Perimeter

SealedCrackPerimeters> <SealedCrack><SealedCrackID>0</SealedCrackID> -<BoundingBox> <MinX>2730.0</MinX> <MaxX>2900.0</MaxX> <MinY>5.0</MinY> <MaxY>2745.0</MaxY> </BoundingBox> <TextureInside>1.547</TextureInside> <TextureOutside>2.091</TextureOutside> <AvgIntensity>41</AvgIntensity> <Area>0.222</Area> l<Perimeter> <Node> <X>2775.0</X> <Y>5.0</Y> </Node> <Node> P<SealedCrackList> <X>2785.0</X> <Y>5.0</Y> <SealedCrackSkeleton> </Node> <Node> <X>2795.0</X> E<Node> <Y>5.0</Y> </Node> <X>2840.0</X> <Node> <X>2805.0</X> <Y>4374.0</Y> <Y>5.0</Y> </Node> -</Node> <Node> -<Node> <X>2815.0</X> <Y>5.0</Y> <X>2820.0</X> </Node> <Node> <Y>4394.1</Y> <X>2825.0</X> <Y>5.0</Y> </Node> <Node> <X>2820.0</X> <Y>4414.1</Y> </Node> -<Node> <X>2840.0</X> <Y>4434.2</Y>

Yellow line - Skeleton

<SealedCrackID>0</SealedCrackID>

-</Node>

<Node>

<X>2840.0</X>

Example 5 (raveled section partially repaired)

Example 5 (raveled section partially repaired)

Example 6 (porous road)

Example 6 (porous road)

Pavemetrics Example 7 (damaged sealing)

Example 7 (damaged sealing)

Example 8 (mix of sealed and 3D cracks)

Example 8 (mix of sealed and 3D cracks)

Example 9 (white and dark sealed cracks)

Example 9 (white and dark sealed cracks)

- 1) Does proposed sealed crack detection protocol seem OK?
- 2) Should sealed cracks have severity levels?
- 3) Is there a need to evaluate seal quality?

Eile View Help